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X-ray diffraction in continuously deformed crystals is considered by application

of Fourier optics and from the viewpoint of the analogy between X-ray dynamics

and the motion of two-level systems in quantum mechanics. Different forms of

Takagi's equations are traced back to a common framework and it is shown that

they are different ways to represent the same propagation equation. A novel

way to solve Takagi's equations in the presence of a constant strain gradient is

presented and approximation methods derived from quantum mechanics are

considered. Crystal deformation in X-ray interferometry and two-crystal

spectrometry are discussed and it is demonstrated that Si lattice-parameter

measurements depend on the diffracting plane spacing on the crystal surface.

1. Introduction

Our work was prompted by advances in the measurement of

the Si lattice parameter by X-ray interferometry (Bonse &

Hart, 1965; Bergamin et al., 1999) and by two-crystal spec-

trometry (Hart, 1969; Kessler et al., 1994). The sensitivity and

accuracy of these techniques now require a detailed theor-

etical framework that includes the study of lattice deforma-

tion. Experimental evidence of anomalies was reported by

Kessler et al. (1999) and Deslattes et al. (1999) and we

collected indications that deformations may in¯uence

measurements in an unexpected way (Mana et al., 2004a). In

order to provide solid foundations to our investigations, a

previous article (Mana & Montanari, 2004) gave a reformu-

lation of the dynamical theory of X-ray diffraction based on

Takagi's equations and Fourier optics. This reformulation

extends the coupled pendulum model of dynamical diffraction

(Ewald, 1965; Shevchenko & Pobydaylo, 2003) and makes

extensive use of the analogy between the X-ray dynamics in

crystals and two-level systems in quantum mechanics (Kato,

1973). The purpose of this article is to complete that refor-

mulation by extending it to continuously deformed crystals.

In a perfect crystal, in the two-wave approximation of the

dynamical theory, two propagation modes (in Ewald's

terminology, wave®elds) exist, any of which consists of a linear

superposition of two plane waves whose wavevectors fall into

continuous bands separated by a forbidden gap (Authier,

2001). These wave®elds are the analogue of energy eigenstates

of relativistic electrons and two-level atoms. In deformed

crystals, as in their quantum-mechanical counterparts,

perturbation of the Hamiltonian induces intra- and inter-

branch transitions between perfect-crystal wave®elds. In the

general case, Takagi's equations have no analytical solutions

and it is necessary to integrate them numerically. Yet

numerical integration does not give a description of the

underlying physics. However, if one takes into account that

Takagi's equations have the same structure as SchroÈ dinger's

equation, more precisely as Dirac's equation, since both are

linear in the derivatives, quantum mechanics (Fano, 1971)

offers an additional viewpoint and the possibility of examining

the relevant physics. Conversely, in a didactic perspective, the

dynamical theory of X-ray diffraction could represent a model

of quantum electrodynamics.

In x2, we trace the theory variants back to a common

framework and we show that they are only different ways to

represent the same equation. In x3, we examine in detail

approximation methods and the relevant validity limits. In

order to illustrate our formalism, in x4, we investigate a

number of example deformations, including the uniform strain

gradient for which an analytical solution is possible. In x5, we

discuss the implications of our results in X-ray interferometry

and in two-crystal spectrometry and demonstrate that Si

lattice-parameter measurements depend on the diffracting

plane spacing on the crystal surface. In Appendix A, we give a

reasonable explanation for the effectiveness of substituting

mathematical planes for the real crystal surface. The list of the

main symbols we use is given in Appendix B.

2. Representation of Takagi's equations

Our analysis will be restricted to a semi-in®nite symmetrically

cut crystal occupying the z � 0 region and to a coplanar Laue

re¯ection, where the normal to the crystal surface z lies in the

re¯ection plane and the z< 0 region is a vacuum. Conse-

quently, only two coordinates are involved and X-ray
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diffraction is two-dimensional. This restriction does not cause

loss of generality; the way to reduce a non-coplanar asym-

metrical re¯ection to two dimensions is given by Mana &

Montanari (2004). The crystal deformation is described by the

strain ®eld u�r�, where r � xx̂� zẑ is a two-dimensional

position vector. Since electric susceptibility is

��r� �P
h0

�h0 exp�ÿih0�rÿ u��; �1�

where h0 is any reciprocal vector in the absence of the

deformation, we can de®ne a locally perfect crystal whose

generic reciprocal vector will be indicated by h. By expanding

h0�rÿ u�r�� in series, we can prove that h � h0 ÿ r�h0u�.
Eventually, we indicate the reciprocal vector of the unstrained

diffracting planes by g0, direct the x axis alongÿg0 and assume

that the diffracting planes are symmetrical with respect to the

origin, so that �g � ��g.

In the two-wave approximation of the dynamical theory

of X-ray diffraction in crystals, the ®eld states jD�z�i form

the Hilbert space c2 
 L2�r�, where c2 is a two-dimensional

complex vector space (the space of the dispersion-surface

branches) and L2�r� is a space of square-integrable complex

functions (the space of ®eld amplitudes in the observation

plane z � constant). The various forms of Takagi's equations

are different ways of representing the abstract equation

i@zjD�z�i � HjD�z�i; �2�
where we use the Dirac bra/ket notation (Fano, 1971) and z is

the evolution parameter. Throughout this paper, we shall use a

two-component spinor-like representation of c2. The linear

operators in c2 
 L2�r� are indicated by bold letters. Their

direct- and reciprocal-space representations are matrices of

in®nite rank, e.g. ��xÿ x0�H�x; z� and eH�qÿ q0; z�, where q is

conjugate to x and H and eH are 2� 2 complex matrices.

Consequently, the operation of, say, H on jD�z�i implies the

sum on the repeated c2 index and the integration over the

L2�r� variable. By transforming the jD�z�i state according to

j'�z�i �W�z�jD�z�i, where W is any non-singular operator,

we obtain different explicit theory formulations. The trans-

formed equation is

i@zj'�z�i � �WHWÿ1 ÿ iW�@zWÿ1��j'�z�i: �3�
In the study of X-ray propagation, the evolution operator U�z�
is determined, by means of which the initial ®eld state jD�0�i is

translated, that is, jD�z�i � U�z�jD�0�i. Its reciprocal-space

representation, eU�q; q0; z� � hqjU�z�jq0i is called the optical

transfer matrix. In the case of a perfect crystal, the transfer

matrix is diagonal and will here be indicated by

��qÿ q0�eU0�q; z�.

2.1. O±G representation

The O±G representation of the crystal ®eld,

D�r� � �DO�r� exp�ÿiKOr�êO �DG�r� exp�ÿiKGr�êG�
� exp�ÿi�z�; �4�

where the � and � subscripts indicating polarization are

omitted and êO and êG are unit vectors orthogonal (� polar-

ization) or parallel (� polarization) to the �x; z� plane, uses the

plane waves hrjni � exp�ÿiKnr�, where n �O, G and jni 2 c2,

as the basis functions. The ®eld amplitudes Dn�x; z� �
hxjDn�z�i and eDn�q; z� � hqjDn�z�i, where hxjqi � exp�ÿiqx�,
are the direct- and reciprocal-space representations of

jDn�z�i 2 L2�r�. The vacuum wavevectors KO and KG �
KO � g0 are tuned to kinematical resonance, i.e. they satisfy

Bragg's law 2g0KOG � �g2
0, K � KO � KG is the X-ray

wavenumber in vacuum, � is the Bragg angle and

� � �oK=�2 cos �B�. It is to be noted that the choice of g0 and,

consequently, of KO and KG is not unique. In other words, the

same physics can be described by different choices of g0 and,

consequently, of deformation.

The master equations for the X-ray dynamics in deformed

crystals are to be found in a previous article [equations (36)

and (46) in Mana & Montanari (2004)]. Our present starting

point is the reciprocal-space representation of Takagi's

equations for a semi-in®nite deformed crystal,

pzDO � ÿqDO tan �B � K�u
�g �DG=�2 cos �B�

pzDG � K�u
g �DO=�2 cos �B� � qDG tan �B;

�5�

which, in the direct space, read

i@z

DO

DG

� �
� ÿi tan �B@x � exp�ÿig0u�

� exp��ig0u� i tan �B@x

� �
DO

DG

� �
: �6�

In the above equations, the resonance error, p � pzẑ� qx̂,

is split into one component orthogonal to the observation

plane, pz, and one, q, in the observation plane, and

� � êOêG��gK=�2 cos �B� is a coupling constant. The Fourier

components of electric susceptibility �u
�g�r� �

êOêG��g exp��ig0u� include the polarization factor, �u
�g�p� is

the Fourier transform of �u
�g�r�, and �u

�g �DOG are convolu-

tion integrals. In the following, pz ± the equivalent to energy in

quantum mechanics ± is called resonance error, q ± the

equivalent to linear momentum ± is called the deviation par-

ameter and, in addition to the Fourier transform

Dn�q; pz� �
R�1
ÿ1

Dn�r� exp�ipr� dr; �7�

we shall use the mixed Fourier transform

eDn�q; z� � R�1
ÿ1

Dn�x; z� exp�iqx� dx: �8�

The Hamiltonian operator H is so de®ned that

hx0jHjxi � ��xÿ x0�H�x; z�, where H�x; z� is the 2� 2 matrix

in (6). As suggested by the convolutions, propagation modes

are not plane-wave superpositions; interaction mixes states

having different deviation parameters and, therefore,

hq0jHjqi � eH�qÿ q0; z�. However, in a perfect crystal,

propagation modes are plane-wave superpositions and,

consequently, hq0jH0jqi � ��qÿ q0�eH0�q�.
In the derivation of (5), we assumed that the variance of p in

�u
�g is negligible when compared with g2

0 [cf. equation (29) in

Mana & Montanari (2004)]. In the direct space, the corre-

sponding assumptions, j@ijug=g0j � 1 and �@iug�2 � 1, where

ug � ĝ0u, are discussed by Authier (2001) and HaÈrtwig (2001).



2.2. Eikonal representation

A way to solve (6) is to diagonalize the Hamiltonian

operator by solving the related eigenvalue problem (Mana &

Montanari, 2004). In a general case, this analytical integration

is not possible, as the Hamiltonian eigenvectors move in the

Hilbert space. A way to describe X-ray propagation is the

elimination of this motion through an appropriate repre-

sentation of the crystal ®eld. According to this approach, it is

still possible to de®ne wave®elds. The only difference from the

perfect-crystal case is that they are no longer plane-wave

superpositions; wave®eld wavefronts bend, adjusting them-

selves to the deformation in such a way that Bragg's law is

always locally satis®ed.

Let us consider the basis plane waves propagating along the

wavevectors Ko and Kg � Ko � g, which satisfy Bragg's law

2gKog � �g2, where g � g0 ÿ r�g0u� is the local reciprocal

vector. If we write Kog � KOG � rSog, the eikonal-like func-

tion So must satisfy the equation

g0rSo � KGr�g0u� �9�
and Sg must be calculated according to Sg � So ÿ g0u. In (9),

we have used the ®rst-order approximations grSo � g0rSo

and g2 � g2
0 ÿ 2g0r�g0u�. Equation (9) does not identify Ko

uniquely, since any So can be replaced by a new eikonal

S0o � So � &, where gor& � 0, without altering the kinema-

tical resonance. In order to ®x So uniquely, we require

Ko � Kg � K, to which the additional constraint

KOrSo � 0 �10�
will follow.

By application of (3), the state transformation

Do

Dg

� �
� exp�iSo� 0

0 exp�iSg�
� �

DO

DG

� �
; �11�

that is,

D�r� � �Do�r� exp�ÿi�KOr� So��êo

�Dg�r� exp�ÿi�KGr� Sg��êg� exp�ÿi�z�; �12�
leads to

i@z

Do

Dg

� �
� ÿi tan �B@x �

� i tan �B@x

� �
Do

Dg

� �
; �13�

where we have used (10). Therefore, if a solution to (9) and to

(10) exists, transformation (11) reduces the X-ray dynamics to

propagation in a perfect crystal. From this point of view,

transformation (11) removes the exp�ÿiSog� terms from DO

and DG and leaves Do and Dg unaffected by deformation.

However, propagation modes are now linear superpositions of

the two modi®ed plane waves exp�ÿi�KOGr� Sog�� and energy

¯ows along curved lines. As pointed out by Kato (Kato, 1973;

Azaroff et al., 1974, p. 407), equation (13), where tan �B

substitutes for the speed of light and � for the rest energy, is

equivalent to Dirac's equation (in Hamiltonian form) in one

dimension and in the absence of interactions. Since only one

dimension is considered, only positive and negative energies

need to be introduced and the spin concept is not relevant.

As can be veri®ed by applying the K̂Or operator on both

sides of (9) ± since K̂Or is the derivative along the KO

direction ± a necessary condition for solving (9) and (10) is

cos �B@
2
zug ÿ sin �B@

2
xug � 0; �14�

which equation was obtained by Kato (Kato, 1973; Azaroff et

al., 1974, p. 413). This means that, if we have a solution for (6)

with a displacement u, the same solution, apart from a phase

factor, applies to all displacements u� u0, provided that u0

satis®es (14). In fact, transformation (11), where So is obtained

by using u0 in (9), eliminates the contribution of u0 to the X-ray

dynamics. As we shall presently show, this result corresponds

to gauge invariance in electrodynamics and (11) is the relevant

gauge transformation. In a general case, equations (9) and (10)

have no solution and, therefore, X-ray dynamics cannot be

reduced to propagation in a perfect crystal. Although we can

still use the eikonal representation, where So is a solution for

(9) and Sg � So ÿ g0u, now KOrSo 6� 0. In this case, since

g0rSg � KOr�g0u� and KGrSg � KOrSo, as can be veri®ed

from (9) and Bragg's law, Takagi's equations read

i@z

Do

Dg

� �
� ÿi tan �B@x ÿ � �

� i tan �B@x ÿ �
� �

Do

Dg

� �
;

�15�
where �, which is either

� � K̂OrSo= cos �B � @zSo � tan �B@xSo �16�
or

� � K̂GrSg= cos �B � @zSg ÿ tan �B@xSg; �17�
plays the role of the interaction potential in quantum

mechanics. In (15), the Dog amplitudes propagate along

Kog � KOG �rSog, thus satisfying Bragg's law. However, the

wavenumber of the basis plane waves, Kog � K � � cos �B, is

no longer the wavenumber in vacuum.

2.3. o±g representation

We now propose to obtain the transformation by which the

exp��ig0u� terms are removed from the Hamiltonian matrix

and (6) are written in the usual form (Authier, 2001). This is

accomplished by setting So � 0 and Sg � ÿg0u, which corre-

spond to the representation of the crystal ®eld

D�r� � f'o�r� exp�ÿiKOr�êo � 'g�r� exp�ÿi�KGrÿ g0u��êgg
� exp�ÿi�z�: �18�

By application of (3), (18) leads to

i@z

'o

'g

� �
� ÿi tan �B@x �

� i tan �B@x � �g

� �
'o

'g

� �
; �19�

where the interaction potential is

�g � K̂Gr�g0u�= cos �B: �20�
As is known [cf., for example, Mana & Montanari (2004),

equations (68) and (70)], �g is proportional to the KO devia-

tion from the centre of the re¯ection domain. Therefore, the

effective misalignment is �e � ÿ�g=g0 (Authier, 2001, p. 362),
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where we have used g0 � 2K sin �B. Crystal deformation can

be eliminated if a change in representation is possible, which

uses resonant basis plane waves. In the o±g representation,

the basis plane waves propagate along Ko � KO and Kg �
r�KGrÿ g0u� � KO � g, which, unless KGr�g0u� � 0, do not

satisfy Bragg's law. In fact,

g2 � 2KOg � ÿ2KGr�g0u� � ÿ2K cos �B�g; �21�

where we used g � g0 ÿr�g0u�, 2KOg0 � ÿg2
0 and g2 �

g2
0 ÿ 2g0r�g0u�. Equation (21) suggests another way to inter-

pret �g. According to it, the local kinematical resonance error

of the basis plane waves is accounted for, but rotation and

strain are not distinguished because both combine linearly.

Therefore, apart from boundary conditions, a strained crystal

appears rotated to X-rays and vice versa. Additionally, since �g

depends only on the deformation component along g0, any

deformation for which KGr�g0u� � 0 is inessential. It must be

noted that the foregoing condition is equivalent to KG�g � 0,

where �g � gÿ g0 � ÿr�g0u� (Authier, 2001, p. 362). The

vanishing of �g does not mean that the solution of (6) is the

same as that in a perfect crystal. In fact, although (19) reduces

to perfect-crystal equations, the ®eld amplitudes are different

[cf. equations (48) and (49) in Mana & Montanari (2004)]. In

the present case, the deformation is entirely singled out in the

exp�ig0u� phase factor, coherently with the observation that

KO and g satisfy Bragg's law.

We can also remove the exp��ig0u� terms from the

Hamiltonian matrix symmetrically. To this end, let us set

So � g0u=2 and Sg � ÿg0u=2; this corresponds to representing

the crystal ®eld by

D�r� � f'o�r� exp�ÿi�KOr� g0u=2��êo

� 'g�r� exp�ÿi�KGrÿ g0u=2��êgg exp�ÿi�z�: �22�

By application of (3), (22) leads to

i@z

'o

'g

� �
� ÿi tan �B@x ÿ �o=2 �

� i tan �B@x � �g=2

� �
'o

'g

� �
;

�23�
where the interaction potential is

�og � K̂OGr�g0u�=cos �B � g0�@zug � tan �B@xug�: �24�

With correspondences i@z � g0 tan �B@xug ! i@z � e� and

i tan �B@x � g0@zug ! i tan �B@x ÿ eA, where e is the electron

charge and � and A are the scalar and vector potential, (23) is

equivalent to Dirac's equation in the presence of an electro-

magnetic ®eld. Additionally, the potential components satisfy

@xA� @z�= tan �B � 0, which is equivalent to the Coulomb

gauge (Kato, 1973; Azaroff et al., 1974, p. 407).

In (22), ®eld amplitudes propagate along Ko � KO ÿ�g=2

and Kg � KG ��g=2 � Ko � g. We investigate again the

conditions under which Ko and g satisfy Bragg's law. By

repeating the previous calculation, we obtain

g2 � 2Kog � �KO � KG�r�g0u�: �25�

Therefore, Bragg's law is satis®ed when

�KO � KG�r�g0u� � 0, that is, when the ug equipotential

surfaces are orthogonal to g0.

3. Approximation methods

There are only few deformations for which Takagi's equations

can be solved analytically. Numerical (Authier et al., 1968;

Epelboin, 1983; Carvalho & Epelboin, 1993; Epelboin, 1996)

and approximation (Penning & Polder, 1961; Kato, 1963)

methods therefore play an important role in the application of

the theory. Presently, we shall outline some of the last, adapted

from quantum mechanics.

3.1. Adiabatic approximation

When a deformation depends only on z, within the limit of

an in®nitely slow displacement, any initial eigenstate of H�0�
will shift into the eigenstate of H�z� resulting from the former

by continuity [adiabatic theorem, see Messiah (1962)].

Formally, the crystal-®eld propagator is

U�z� �Wÿ1�z� exp
h
ÿi
Rz
0

H��t� dt
i

W�0�; �26�

where H� � WHWÿ1 is the diagonal representation of the

Hamiltonian operator. According to (26), X-rays move inside

the crystal tuning themselves to the local dispersion surface

without interbranch transitions.

In order to exemplify this approximation, let the sym-

metrical o±g representation of the Hamiltonian be

eH�q� � ÿqÿ �
� qÿ

� �
; �27�

where qÿ�z� � q tan �B � �g�z�=2 is the deviation parameter.

The next step is to calculate the Hamiltonian eigenvalues, that

is, the resonance errors,

pz � p��q� � �
���������������
q2ÿ � �2

p
; �28�

and eigenstates, that is, the wave®elds,

jq;�i � qÿ ÿ p�
ÿ�

� �
jqi: �29�

The eigenvalues (28) de®ne a two hyperbolic branch disper-

sion surface and completely determine the X-ray dynamics in

perfect crystals (Mana & Montanari, 2004). The j�i 2 c2

states, characterized by positive or negative resonance errors,

are the equivalent of positive and negative energy states of a

spinless relativistic particle. We note that the perfect-crystal

eigenvalues are degenerate, e.g. the wave®elds jÿq;�i and

j�q;�i correspond to the same resonance error. With the

jq;�i wave®elds as a basis, the Hamiltonian

eH��q� � ÿ ���������������
q2ÿ � �2

p
0

0
���������������
q2ÿ � �2

p" #
�30�

is diagonal. Eventually, the adiabatic approximation of the

optical transfer matrix is



eU�q; z� � Wÿ1�z� exp�iS�z�� 0

0 exp�ÿiS�z��
� �

W�0�; �31�

where

S�z� � Rz
0

���������������
q2ÿ � �2

p
dt; �32�

W � 1

2�
���������������
q2ÿ � �2

p � qÿ ÿ
���������������
q2ÿ � �2

p
ÿ� ÿqÿ ÿ

���������������
q2ÿ � �2

p" #
�33�

and

Wÿ1 � qÿ �
���������������
q2ÿ � �2

p
qÿ ÿ

���������������
q2ÿ � �2

p
ÿ� ÿ�

" #
: �34�

To examine the validity limits of (31), we observe that,

according to (3), (31) corresponds to neglecting W@zWÿ1

when compared with eH�. The largest eigenvalue,

�e@zqÿ=�2��, of W@zWÿ1 must be compared with the smallest

eigenvalue, �=�e, of eH�, where �e � �=� is the PendelloÈsung

length. Since 2@zqÿ � @z�g, the validity condition for adiabatic

approximation is

j@z�gj � p2
e; �35�

where pe � 2�=j�ej, i.e. the gap between the positive and

negative branches of the dispersion surface, is analogous to

the Bohr frequency characterizing the transition between the

jq � 0;�i and jq � 0;ÿi wave®elds. Equation (35) indicates

that the frequency of the W@zWÿ1 eigenstates must be low

compared with the Bohr frequency of interbranch transition.

When �g � ÿg0�e is used, (35) reduces to the condition

j@z�ej � pe�0 (Authier, 2001, p. 409), which indicates that the

effective misalignment gradient must be smaller than the

Darwin width �0 � pe=g0 over a distance equal to the

PendelloÈsung length.

3.2. Instantaneous approximation

We assume now the Hamiltonian to change from the initial

value H1, at z � 0, to the ®nal value H2, at z � T. When T

tends to zero, that is in the case of an in®nitely rapid transition,

the crystal ®eld remains unchanged. This follows from the

formal expression of the propagation operator

U�T� � exp
h
ÿ i

RT
0

H�t� dt
i
� Iÿ iTHa; �36�

where I is the identity operator; when T tends to zero, U�T�
approximates the identity operator. The approximation error

can be found by calculating the component of U�T�j1i in the

subspace orthogonal to the initial state j1i, where h1j1i � 1.

The relevant calculations we adapted from Messiah (1962) are

given in Appendix A. The condition for the state modi®cation

to be negligible is T � 1=�H, where

�2
H � hHya Hai ÿ hHai2 �37�

is the variance of the average Hamiltonian

Ha � �1=T� RT
0

H�t� dt �38�

in the initial state. In this case, a plane boundary can substitute

for the transition region, the ®nite thickness of which is

neglected.

3.3. Transfer-matrix expansion

We now review brie¯y the time-dependent perturbation

theory. In quantum mechanics (Messiah, 1962; Fano, 1971), the

Hamiltonian is assumed Hermitian, but this is not true in the

case of Takagi's equations and, consequently, the theory

extension must be examined with care. The perturbation

method is based on the following manipulation of (15). In the

®rst place, we split the Hamiltonian into two parts: H0, which

describes a perfect crystal, and V, which describes X-ray

interaction with the deformation ®eld. Hence, H � H0 � V,

where V�x; z� � ÿ��x; z�I, I being the 2� 2 identity matrix.

Then, we remove the perfect-crystal evolution of the crystal

®eld by a change from the o±g representation to what is known

as the interaction representation. Hence,

jDI�z�i � Uÿ1
0 �z�jD�z�i � exp�iH0z�jD�z�i: �39�

By application of (3), (39) leads to

i@zjDI�z�i � VIjDI�z�i; �40�
where VI � Uÿ1

0 VU0 is the interaction representation of

V and jDI�0�i � jD�0�i. The evolution of (39), jDI�z�i �
UI�z�jD�0�i, where

UI�z� � Iÿ i
Rz
0

VI�t�UI�t� dt � Iÿ i
Rz
0

VI�t� dt; �41�

now takes place slowly, in¯uenced by the deformation alone.

Since U�z� � U0�z�UI�z�, we obtaineDo�q; z�eDg�q; z�

" #
� eU0�q; z�

eDo�q; z�eDg�q; z�

" #

ÿ i

Z z

0

eU0�q; zÿ t�
Z �1
ÿ1

e��qÿ q0; t�eU0�q0; t�

�
eDo�q0; 0�eDg�q0; 0�

" #
dq0 dt: �42�

The usefulness of (42) depends on effective misalignment. The

evolution operator UI differs from identity in proportion to �;

if it is small, the perturbation expansion converges rapidly and

we only need to consider the ®rst term (Fano, 1971, p. 366). Let

us suppose that, initially, the ®eld state is a perfect-crystal

wave®eld, say jqa; sai, where sa � �1 is the sign of the reso-

nance error and hqa; sajqa; sai � 1. We calculate w2
ab �

jhqb; sbjU�z�jqa; saij2, i.e. the scattered intensity density in a

different wave®eld, say jqb; sbi, where hqb; sbjqb; sbi � 1. Since

U0�z�jq; si � exp�ÿipsz�jq; si, through (41), we get

w2
ab �

��� Rz
0

eVba�qba; t� exp�ipbat� dt
���2 exp�2�bz�; �43�

where
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eVba�qba; z� � cbae��qba; z� �44�
is the hqb; sbj��z�jqa; sai matrix element relative to the tran-

sition, cba�qb; qa� � hsbjsai is the amplitude of the initial

resonance-error state, jsai 2 c2, in the ®nal state, jsbi 2 c2,

qba � qb ÿ qa is the deviation parameter difference, �b �
Im�pb� is the ®nal wave®eld absorption, pba � psb�qb� ÿ psa�qa�
is the transition Bohr frequency, and p��q� are the perfect-

crystal resonance errors (28), where qÿ � q tan �B. It is to be

noted that pba is complex, since H0 is not Hermitian.

The scattered intensity density (43) is proportional to the

squared modulus of the pba component in the harmonic

analysis of eVba�qba; z�. This analysis is simple when � does not

depend on z. Then

w2
ab �

4jcbae�ba�qba�j2 exp���a � �b�z�jsin�pbaz=2�j2
jpbaj2

: �45�

For any given value of z, the scattered intensity depends on the

transition Bohr frequency and has a peak at pba � 0; scattering

proceeds towards states situated in a resonance-error band of

2�=z width. The scattered intensity density is shown in Fig. 1.

When qb � qa and, consequently, pba � 0, resonances appear.

Fig. 1 also shows the intensity jcabj2 of jsai in jsbi. When

qb !ÿ1, since the initial resonance-error state approxi-

mates joi and the ®nal state, too, approximates joi, cab � 1. On

the contrary, when qb !�1, the ®nal state approximates jhi
and cab � 0. The resonance at qb � ÿqa corresponds to the

transition into the wave®eld jÿqa;�i. However, as shown by

the jcabj2 plot, in this case, the initial and ®nal resonance-error

states are quasi-orthogonal, so that this transition is practically

impossible.

Analysis of the way the scattered intensity density depends

on z requires calculation of the intensity,

w2
aa � �1ÿe�2�0�z2� exp�2�az�; �46�

where �a � Im�pa�, of the initial state as it propagates through

the crystal. In (46), the exponential factor describes attenua-

tion or ampli®cation (Borrmann's effect), according to nega-

tive or positive resonance errors. But the crystal-®eld intensity

is prevented from increasing by the exp�ÿi�z� factor in (18). If

we observe that 2 limz!1 j sin� pbaz=2�j � exp�j�bajz=2�, for

any given pba value, we notice that w2
ab oscillates with period

2�=Re�pba� and fades about the average value

lim
z!1

wab

waa

� jcbae�ba�qba�=pbaj exp��baz� if �b >�a

jcbae�ba�qba�=pbaj if �b <�a:

�
�47�

For the above asymptotic relation to be valid, z must be large

with respect to the oscillation period of (45) but, at the same

time, be small for the ®rst-order approximation (41) to be

valid. According to (47), deformation produces an energy ¯ow

towards the states exhibiting the lowest absorption.

When � is a periodic function of z and has angular

frequency }, with z much larger than 2�=} (Zolotoyabko &

Panov, 1992), the scattered intensity density consists of two

terms like (43), where pba � } substitutes for pba. In practice,

wab is everywhere small except in transitions having Bohr

frequencies equal to �}. Therefore, if } is low, only intra-

branch scattering occurs and wave®elds propagate adiabati-

cally, but if} is high, or the gap between the dispersion surface

branches is low ± which occurs for high X-ray energies,

interbranch scattering occurs and new wave®elds are excited

on the opposite branch (Balibar et al., 1975; Authier, 2001,

p. 421).

It must be noted that Takagi's equations are obtained by

a ®rst-order approximation of resonance error (Mana &

Montanari, 2004), which is re¯ected in the presence of only

®rst-order derivatives in (6). Therefore, they correspond to the

geometric approximation of visible optics, as can be veri®ed by

switching off the interaction with the crystal (Mana &

Montanari, 2004). However, the coupling of the basis waves

jOi and jGi with a de®nite wavevector closely imitates

diffraction, understood as an interference between the plane-

wave components of the ®eld. When the spatial frequency of

deformation is large enough for interbranch scattering to

occur, deformation can be viewed as an obstacle in visible

optics and as a source of secondary waves. The scattered

Figure 1
First-order intensity density (solid line) scattered from the jqa;�i
wave®eld into the jqb;�i wave®eld (intrabranch scattering). Si (220)
Laue symmetrical coplanar re¯ection, 17 keV X-rays, � polarization,
effective misalignment independent of z, qa � ÿ1:25 rad mmÿ1 and
z � 200 mm. When qb � �qa, resonances appear having widths inversely
proportional to z. The broken line is the intensity c2

ab � jhsbjsaij2 of the
initial resonance error state in the ®nal state.

Figure 2
First-order intensity density (solid line) scattered from the jqa;�i
wave®eld into the jqb;ÿi wave®eld (interbranch scattering). Si (220)
Laue symmetrical coplanar re¯ection, 17 keV X-rays, � polarization,
periodic scattering potential having angular frequency } �
0.37 rad mmÿ1, qa � ÿ1:25 rad mmÿ1 and z � 200 mm. When
qb � 0 rad mmÿ1, a resonance appears. The broken line is the intensity
c2

ab � jhsbjsaij2 of the initial resonance error state in the ®nal state.



intensity density is shown in Fig. 2; when jqb ÿ qaj � } reso-

nance appears. In Fig. 2, the initial resonance-error state

approximates joi. Therefore, when qb !ÿ1, the ®nal state,

jhi, is orthogonal to the initial state and cab � 0. On the

contrary, when qb !�1, the ®nal resonance-error state is

the same joi state and cab � 1. We note that interbranch

transitions conserving the deviation parameter are impossible

because the relevant initial and ®nal resonance-error states

are orthogonal and, consequently, cab � 0.

4. Deformation examples

In this section, we discuss some deformation examples. Two

steps must be considered. Firstly, the matching of X-ray ®elds

outside and inside a crystal and, secondly, the propagation of

X-rays. Since outside the crystal u � 0, the vacuum ®eld is

assumed to be represented in the O±G basis, that is, the DOG

®eld components are assumed to be input quantities. Since we

shall describe ®eld dynamics by means of the eikonal or the

o±g representations, to specify the initial state we must apply a

representation change.

4.1. Translation

Translation, ux � s � ÿug, is a trivial deformation example.

In this case, �og � 0, so that there is no effective potential and

(23) is the equation of motion in a perfect crystal. Therefore,

there is no wave®eld change and X-rays behave as if no

translation were present. However, the ®eld amplitudes are

different because the translation contribution to X-ray

dynamics has been singled out in the exp��ig0s=2� factor

[cf. (22) and equation (48) in Mana & Montanari (2004)].

Therefore, the initial values of the crystal-®eld amplitudes are

Dog�x; 0� � exp��ig0s=2�DOG�x; 0�: �48�
It is worth studying X-ray propagation also by the O±G

representation. In this case, when we observe that

�u
�g � ��g exp��ig0s� are nothing else than the Fourier

components of translated-crystal electrical susceptibility, (6)

still corresponds to the equation of motion in perfect crystals

and its solution [cf. equation (61) in Mana & Montanari

(2004)] singles out the same exp�ÿig0s� factor as (18) does.

4.2. Strain

The next deformation example is that of uniform strain. The

ux � "0x � ÿug deformation corresponds to diffracting planes

uniformly strained by @xux � "0 � 1. This deformation occurs

when the wavevectors KOG are tuned to kinematical reso-

nance conditions with respect to a lattice parameter

g0 � ÿg0x̂, which is different from the g � ÿ�1ÿ "0�g0x̂
lattice parameter. Consequently, if the eikonal representation

is used, propagation in a perfect crystal will apply. Since

Kog � K�ẑ cos �B � x̂ sin �B�, 2K sin �B � �1ÿ "0�g0 �
2�1ÿ "0�K sin �B, sin �B � �1ÿ "0� sin �B and cos �B �
�1� "0 tan2 �B� cos �B, we can write

Kog � KOG � �"ẑ� q"x̂; �49�
where 2q" � "0g0, 2�" � "0g0 tan �B.

We are now going to calculate the local wavevectors Kog by

solving

@xSo � ÿKGrug � ÿ"0K sin �B � ÿq"

@zSo � ÿ tan �B@xSo � �":
�50�

Hence,

Sog�x; z� � �"z� q"x; �51�
where we have used Sg � So ÿ g0ug � So � 2q"x. Finally,

account being taken of Kog � KOG � rSog, it is easy to obtain

again (49). Additionally, since g0u � ÿ2q"x, representations

(12) and (22) are identical, apart from the �"z phase, which

originates from (23) via �og � �2�".
We must transform the initial state from the O±G

representation into the o±g representation. Hence,

Dog�x; 0� � exp��iq"x�DOG�x; 0� in the direct space, andeDog�q; 0� � eDOG�q� q"; 0� in the reciprocal space. Finally, the

X-ray dynamics iseDo�q; z�eDg�q; z�
� �

� eU0�q; z� eDO�qÿ q"; 0�eDG�q� q"; 0�
� �

: �52�

Equation (52) can be obtained also through (18). To do so, we

solve (19), where �g � 2q" tan �B. The initial state is now

'o�x; 0�
'g�x; 0�

� �
� DO�x; 0�

DG�x; 0� exp�2iq"x�
� �

�53�

in the direct space ande'o�q; 0�e'g�q; 0�
� �

� eDO�q; 0�eDG�q� 2q"; 0�
� �

�54�

in the reciprocal space. Since �g is a constant, X-ray propa-

gation is (Mana & Montanari, 2004)e'o�q; z�e'g�q; z�
� �

� eU0�q� q"; z� eDO�q; 0�eDG�q� 2q"; 0�
� �

exp�ÿi�"z�:
�55�

Account being taken of Dn�x; z� � exp�i��"zÿ q"x��'n�x; z�
and of eDn�q; z� � e'n�qÿ q"; z� exp�i�"z�, we can prove that

(55) is the same as (52).

4.3. Rotation

The last trivial example is that of uniform rotation. Hence,

ux � �0z � ÿug and deformation corresponds to diffracting

planes uniformly rotated by @zux � �0 � 1. This deformation

occurs when a crystal is cut asymmetrically and the wave-

vectors KOG are tuned to kinematical resonance with respect

to a lattice parameter g0 � ÿg0x̂ different from g �
ÿg0�x̂ÿ �0ẑ�. By use of the eikonal representation, the

wavevectors of the basis plane waves are Kog �
K�cos ogẑ� sin ogx̂�, where  o � �B � �0 and  g �
�B ÿ �0. Since

cos og � cos �B � �0 sin �B

sin og � sin �B � �0 cos �B;
�56�

we can also write

Acta Cryst. (2004). A60, 283±293 Mana and Palmisano � Dynamical theory of X-ray diffraction 289

research papers



research papers

290 Mana and Palmisano � Dynamical theory of X-ray diffraction Acta Cryst. (2004). A60, 283±293

Kog � KOG � �� ẑ� q�x̂; �57�
where 2q� � g0�0= tan �B and 2�� � g0�0. In order to

demonstrate that Kog � KOG � rSog are the same wavevec-

tors as in (57), we must solve

@xSo �ÿ KGrug � �K cos �B � q�

@zSo �ÿ tan �B@xSo � ÿ��:
�58�

Hence,

Sog�x; z� � q�x� ��z; �59�
where Sg � So � 2��z has been used, and (57) follows imme-

diately. Also in this case, since g0u � ÿ2��z, (12) and (22) are

identical, apart from the q�x phase, which originates from (23)

via �og � ÿ2��. Eventually, the X-ray dynamics is

eDo�q; z�eDg�q; z�
� �

� eU0�q; z� eDO�q� q�; 0�eDG�q� q�; 0�
� �

; �60�

where the initial state is Dog�x; 0� � exp�iq�x�DOG�x; 0� in the

direct space and eDog�q; 0� � eDOG�q� q�; 0� in the reciprocal

space.

We derive now (60) from (19), where �g � ÿ2q� tan �B.

Since �g is a constant, X-ray propagation is (Mana &

Montanari, 2004)

e'o�q; z�e'g�q; z�
� �

� eU0�qÿ q�; z� eDO�q; 0�eDG�q; 0�
� �

exp�i��z�; �61�

where e'og�q; 0� � eDOG�q; 0� is the initial state. When obser-

ving that Dog�x; z� � exp�i�q�xÿ ��z��'og�x; z� and thateDog�q; z� � exp�ÿi��z�e'�q� q�; z�, it can immediately be

veri®ed that (60) is the same as (61).

4.4. Reversal of effective misalignment

We now consider X-ray propagation when the effective

misalignment is reversed. We assume that, before and after

reversal, X-rays propagate in a perfect crystal and that mis-

alignment changes from the initial value ÿ�0 to the ®nal value

�0 according to

�e�z� �
ÿ�0 if z � z1

�0�2�zÿ z1�=T ÿ 1� if z1 < z < z2

�0 if z � z2,

8<: �62�

where T � z2 ÿ z1. The reciprocal-space symmetrical o±g

representation of the Hamiltonian is given by (27), where

�g � ÿg0�e. The perfect-crystal resonance errors corre-

sponding to different diffracting-plane misalignments and

q � 0 are plotted in Fig. 3. Each hyperbola corresponds to a

well de®ned resonance error; when �e tends to plus or minus

in®nity, the corresponding wave®eld tends toward the

joi � �1; 0�T or jgi � �0; 1�T states indicated in the ®gure. We

assume the initial state to be the wave®eld jq � 0;ÿi and

misalignment to be suf®ciently large to deviate the joi and jgi
states from kinematical resonance conditions and to decouple

them. Therefore, the initial state is jq � 0; gi and propagates

along the Kg direction.

We ®rst consider instantaneous reversal. The calculation of

�H can be performed along the same lines as given in

Appendix A. Hence, if T � j�ej=�, the ®eld state remains

constant, whereas misalignment reverses and, once reversal is

completed, the ®eld still propagates along Kg. However, the

®eld state is now jq � 0;�i, so that interbranch scattering

occurs.

We now consider adiabatic reversal. During reversal, apart

from a phase factor, the ®eld state, which is always jq � 0;ÿi,
glides along the negative branch and the ®eld will be in the

jq � 0; oi state once misalignment is reversed. Therefore, in

this case, once reversal is completed, X-rays propagate along

Ko.

4.5. Constant strain gradient

Takagi's equations for a deformed crystal in which the strain

gradient is constant can be solved exactly (Petrashen, 1973;

Chukhovskii, 1974; Katagawa & Kato, 1974; Litzman &

Janacek, 1974; Authier, 2001, p. 410). We here illustrate an

additional solution, which is based on Fourier optics and is

valid for arbitrary waves falling on the crystal. The stated

deformation

ux � ÿug � a�xÿ s��zÿ z0� � s; �63�
where �s; z0� is the deformation origin, corresponds to a

uniformly bent crystal, where the diffracting planes are

rotated by ��x� � @zux � a�xÿ s� and strained by

"�z� � @xux � a�zÿ z0�. This deformation includes translation

(when a � 0), strain (when z0 !1 and a! 0 with

az0 !ÿ"0) and rotation (when s!1 and a! 0 with

as!ÿ�0). The local reciprocal vector of the deformed crystal

is

g � ÿg0��1ÿ "�x̂ÿ �ẑ�: �64�

Figure 3
Projection of the perfect-crystal resonance error, p��q � 0�, in the
Im�p�� � 0 plane as functions of effective misalignment, �e. Si (220) Laue
symmetrical coplanar re¯ection, 17 keV X-rays and � polarization. The
asymptotic perfect-crystal wave®elds when �e !�1 are indicated at the
end of each hyperbola. Arbitrary ®eld states, represented by points
between the two hyperbolae, are linear wave®eld superpositions with
weights given by the distances from the relevant resonance error. Arrows
indicate the evolution of the ®eld state when the effective misalignment
is reversed. The solid line indicates adiabatic reversal, the broken line
instantaneous reversal.



By application of (24),

�og � ÿ4�xx0 tan �B � 4�zz0; �65�
where �x � ag0=�4 tan �B�, �z � �ag0=4� tan �B, z0 � zÿ z0

and x0 � xÿ s, and the equations of motion for ®eld ampli-

tudes (22) are

�i@z ÿ 2�zz0� 'o

'g

" #

� ÿ�i@x ÿ 2�xx0� tan �B �

� �i@x ÿ 2�xx0� tan �B

� �
'o

'g

" #
:

�66�
In order to solve (66), we set

'og � Dog exp�ÿi��xx02 � �zz02��; �67�
so that (66), which now reads

i@z

Do

Dg

� �
� ÿi tan �B@x �

� i tan �B@x

� �
Do

Dg

� �
; �68�

reduces to equations of motion in a perfect crystal.

We now examine X-ray propagation by using the eikonal

representation. To this end, we must solve

@xSo �ÿ KGrug � 2�x�x0 ÿ z0 tan �B�
@zSo �ÿ tan �B@xSo � 2�z�z0 ÿ x0= tan �B�;

�69�

where ug � ÿax0z0 ÿ s. The solutions of (69),

So�x; z� � �xx02 � �zz02 � g0ug=2 �70�
and

Sg�x; z� � �xx02 � �zz02 ÿ g0ug=2; �71�
justify the use of the Dog symbols to indicate ®eld amplitudes

in (67). In order to prove explicitly that the

exp�ÿi�KOGr� Sog�� plane waves track crystal deformation,

let us observe that, as the x coordinate varies, the wavefront

bends and the deviation from Bragg's angle,

#g�x; z� � @xSg�x; z�
K cos �B

� a�x0 � z0 tan �B�; �72�

is equal to the effective misalignment

�e�x; z� � ÿ @gug

cos �B

� a�x0 � z0 tan �B�: �73�

To complete the analysis of X-ray propagation, we must ®x

the initial state at z � 0. To this end, in the ®rst place, we write

g0ug�x; 0� � ÿ"0g0xÿ g1s; �74�
where g1 � g0�1ÿ "0� is the magnitude of g�x; 0� and

"0 � ÿaz0 is the diffracting-plane strain at z � 0. In the

second place, apart from an inessential phase term common to

both the o and g components, we write

Dog�x; 0� � DOG�x; 0� exp�i�xx2� exp�iqogx� exp��ig1s=2�;
�75�

where

2qog � 2�q� � q"� � ��0= tan �B � "0�go �76�
and �0 � ÿas and "0 � ÿaz0 are the local diffracting-plane

rotation and strain at the reference frame origin. In the third

last place, the initial state iseDog�q; 0� � �eDOG �eF��q� qog� exp��ig1s=2�; �77�
where eF�q� � i

��������
�=2

p
exp �ÿiq2=4�x� �78�

is the Fourier transform of exp�i�xx2�. Finally, the solution of

Takagi's equation for a crystal with a constant strain gradient

is eDo�q; z�eDg�q; z�
� �

� eU0�q; z� eDo�q; 0�eDg�q; 0�
� �

; �79�

where eU0�q; z� is given by the dynamical theory of X-ray

diffraction in perfect crystals (e.g. Mana & Montanari, 2004),

Dog are given by (12), and Sog are given by (70) and (71). In the

direct space, the searched solution is obtained by back-trans-

forming (79). A detailed examination of the solution and

wave®elds properties can be found in the copious literature

(e.g. Authier, 2001, p. 375). We only observe that, in (75), the

®rst phase term expresses the lens effect of the bent crystal,

the second the effective diffracting-plane rotation, and the

third the differential phase shift between the o and g

components.

5. Discussion of results

Equation (77) is a key result in the application of X-ray

diffraction to the absolute measurement of the Si lattice

parameter by X-ray interferometry. The interferometer

consists of three plane-parallel Si crystals, which split and

recombine X-rays by successive symmetrical Laue diffractions

(Bonse & Hart, 1965). When the third crystal, the analyser, is

moved orthogonally to the diffracting planes, periodic inten-

sity variations in the emerging forward-diffracted and

deviated X-rays occur, whose period, in the case of a

geometrically perfect crystal (Mana & Vittone, 1997a,b), is

equal to the diffracting-plane spacing. The analyser recom-

bines the vacuum-®eld amplitudes DO and DG and, according

to (48), X-ray fringes are originated by the g0s phase shift

between the Do and Dg crystal-®eld amplitudes. In the case of

a deformed analyser, matching between the vacuum- and

crystal-®eld amplitudes is described by (77). Therefore, the

phase shift is now g1s and the fringe period is equal to the

diffracting-plane spacing on the analyser surface. This result is

somewhat surprising and we veri®ed it by a numerical simu-

lation (Mana et al., 2004a). The usual description of the

interferometer operation (cf., for example, Bonse & Hart,

1965; Authier, 2001, p. 483) traces the travelling X-ray fringes

back to the aligned or anti-aligned diffracting-plane position

with respect to the nodes of the standing wave generated

inside the analyser. Therefore, the concept of average

diffracting-plane spacing seems the most important. On the

contrary, our revisited theory ascribes X-ray fringes mostly to
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boundary conditions, which includes both the vacuum-®eld

amplitude and deformation values at the analyser surface. We

assert that, after the propagation modes and the phase shifts

between the Do and Dg amplitudes have been set at the

boundary, X-rays are delivered through the analyser adia-

batically, without any further differential phase retardation

between the Dog interfering amplitudes, which could depend

on the analyser motion.

Equation (77) plays a key role also in a precise comparison

of two Si-crystal lattice parameters by double-crystal Laue

spectrometry. A two-crystal spectrometer consists of two

X-ray sources, two plane-parallel crystals and two detectors

recording the rocking curves of successive Laue re¯ections

(Hart, 1969). If both crystals have the same diffracting-plane

spacing, then both detectors simultaneously record a peak

when the diffracting planes of the two crystals are precisely

parallel. On the contrary, if diffracting-plane spacings are

different, the two rocking curves peak at different angles. The

equation for the difference in diffracting-plane spacings can be

obtained from (76). When �0 is the Bragg rotation of the

second crystal relative to the ®rst, the peak separation is

�� � 2"0 tan �B. Since "0g0 � g0 ÿ g1, the measurement

equation is

g0 ÿ g1

g0

� ��

2 tan �B

: �80�

Also in this case, contrary to what we expected, the inferred

difference refers to the crystal surface. In order to verify also

this result, a numerical simulation, ab initio, of the two-crystal

spectrometer is under way (Mana et al., 2004b).

6. Conclusions

We completed a reformulation of the dynamical theory of

X-ray diffraction based on Fourier optics and on the analogy,

®rst suggested by Kato (1973) and further developed by Mana

& Montanari (2004), between Takagi's and Dirac's equations.

This approach provides new insights into various aspects of

the dynamical theory. A ®rst example is the interpretation of

PendelloÈsung fringes as the counterpart of quantum beats in

¯uorescence after coherent excitation of two close levels.

Another example is the interpretation of interbranch scat-

tering as the counterpart of induced transitions between

energy levels. In the same way as occurs with quantum

systems, when the crystal lattice does not vary adiabatically,

each perfect-crystal wave®eld diffuses into the other, with

scattering proportional to the amplitude of the effective

misalignment spectrum component at the Bohr frequency of

the transition. The last example is the validity analysis, based

on the instantaneous approximation of the vacuum-to-crystal

transition, of substituting a mathematical plane for the crystal

surface. We have also given a new solution of Takagi's equa-

tion for a crystal with a constant strain gradient, on the basis of

Fourier optics and for any initial vacuum ®eld. Finally, we

demonstrated that the apparent fringe period and rocking-

curve shift, that is, the values of diffracting-plane spacing

measured by X-ray interferometry and two-crystal spectrom-

etry, are equal to the diffracting-plane spacing on the crystal

surface.

APPENDIX A
Validity limits of instantaneous approximation

Our derivation of the validity limits of instantaneousness

follows that of Messiah (1962), which we think advisable to

outline here to get to the roots of his result, before considering

an exemplifying case. An estimate of the approximation error

is component w2 � h2jQyQj2i of the ®nal ®eld state

j2i � Uj1i in the subspace orthogonal to the initial ®eld state

j1i. Since the projection Q � Iÿ j1ih1j is idempotent, that is,

QyQ � Q, and since the propagator can be approximated by

U � �Iÿ iTHa�, where Ha is de®ned in (38), the required

component is

w2 � h1j�I� iTHya�Q�Iÿ iTHa�j1i
� T2h1jHyaQHaj1i � iTh1j�HyaQÿQHa�j1i; �81�

in which we assumed that the initial and ®nal states are unit

vectors. Since

h1jHyaQHaj1i � h1jHya
ÿ
Iÿ j1ih1j�Haj1i

� h1jHyaHaj1i ÿ h1jHaj1i2 � �2
H �82�

h1jQHaj1i � h1j
ÿ
Iÿ j1ih1j�Haj1i � 0 �83�

and, similarly, h1jHyaQj1i � 0, we can rewrite the approxima-

tion error as �HT, which must be negligible with respect to the

initial-state norm h1j1i.
In order to give an example of the practical use of this

result, we study the transition from vacuum to crystal propa-

gation. Let us consider a coplanar symmetrical Laue geometry,

the x axis being directed along ÿg0, and let hqjHjq0i �
��qÿ q0�eH�q; z�, where

eH�q; z� � ÿq tan �B �f �z�
�f �z� q tan �B

� �
; �84�

let us also take the crystal boundary into account by setting

f �z� �
0 if z � 0

z=T if 0 < z < T

1 if z � T.

(
�85�

The average Hamiltonian across the boundary, eHa�q�, is still

given by (84), where 1=2 substitutes for f �z�. Let the wave-

packet Din�r� propagating along the KO direction be the initial

®eld. Hence,

hqj1i � eDin�q; 0� 1

0

� �
; �86�

where h1j1i � R �1ÿ1 ��eDin�q; 0���2 dq=�2�� � 1,

h1jHaj1i � ÿ
1

2�

Z �1
ÿ1

q
��eDin�q; 0���2 tan �B dq � ÿhqi tan �B;

�87�
where hqi is the expected value of q in the initial state, and



h1jHyaHaj1i �
1

2�

Z �1
ÿ1
ÿq tan �B ��=2
� � ÿq tan �B

�=2

� �
� jDin�q; 0�j2 dq

� 1

2�

Z �1
ÿ1
�q2 tan2 �B � j�j2=4���eDin�q; 0���2 dq

� j�j2=4� hq2i tan2 �B; �88�
where hq2i is the second moment of q in the initial state. Thus,

the variance of the mean Hamiltonian in the initial state is

�2
H � h1jHyaHaj1i ÿ h1jHaj1i2 � j�j2=4� �2

q tan2 �B; �89�
where �2

q � hq2i ÿ hqi2 is the variance of q in the initial state.

By using the Heisenberg uncertainty relation �x�q � 1=2

(where �x is the standard deviation of x in the initial state) and

j�j � �=j�ej (where �e is the PendelloÈsung length), if�
�2

4j�ej2
� tan2 �B

4�2
x

�
T2 � 1; �90�

the validity condition of the instantaneous approximation

T�H � 1 is satis®ed and a mathematical surface can substitute

for the real surface. In the case of the second term on the left-

hand side of (90) being neglected, the validity condition

simpli®es to T � j�ej=2. Thus, Laue's assumption of consid-

ering the crystal surface a mathematical plane, an assumption

not so obvious for X-rays, can be viewed as a consequence of

the mathematical structure of the theory.

APPENDIX B
List of the main symbols

This work was carried out in the framework of a research

cooperation of the Consultative Committee for Mass and

Related Quantities of the International Committee for

Weights and Measures to determine the Avogadro constant

with a target relative uncertainty of 2� 10ÿ8.
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K Wavevector of a generic plane wave in vacuo
KOG Wavevectors of basis plane waves
Kog � KOG �rSog Wavevectors of basis plane waves
k Wavevector of a generic plane wave in crystals
kOG � KOG � �ẑ Wavevectors of basis plane waves in crystals
� � �oK=�2 cos �B� kO component normal to the crystal surface
ẑ Normal to the crystal surface
�B Bragg's angle
p � qx̂� pz ẑ Resonance error
p��q� Perfect-crystal Hamiltonian eigenvalue (resonance

error in this paper)
q Deviation parameter
g0 Reciprocal vector of unstrained diffracting planes
u Crystal deformation
g � g0 ÿr�g0u� Reciprocal vector of strained diffracting planes

� � êOêG��gK

2 cos �B

Coupling coef®cient

�, �og Interaction potential (eikonal and o±g representations)
�e � ÿ�g=g0 Effective misalignment (symmetric coplanar

geometry)
� � @zux Diffracting-plane rotation
" � @xux Diffracting-plane strain
q" � "0g0=2 Shift of ®eld components (strain, reciprocal space)
q� � �0g0=�2 tan �B� Shift of the ®eld components (rotation, reciprocal

space)
qog � q� � q" Shift of ®eld components (constant strain gradient,

reciprocal space)
DOG, Dog, 'og Field components (direct space, O±G eikonal and

o±g representations)

H Deformed-crystal Hamiltonian
H0 Perfect-crystal HamiltonianeH�q; z� Reciprocal-space representation of H
H�x; z� Direct-space representation of HeH��q; z� Reciprocal-space diagonal representation of H
jq;�i Perfect-crystal Hamiltonian eigenvector
U Propagation operatoreU0�q; z� Perfect-crystal transfer matrix


